
Lectures 22-24

The resonance tunnelling phenomenong p

The Coulomb blockade effect The Coulomb blockade effect 
and single-electron transistor (SET)



Transmission through a barrier
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Escape from a  confined state and ‘level broadenning’.
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Double-barrier structure
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(Breit-Wigner formula)

transmission through 
double-barrier structures

 (Breit Wigner formula)
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Resonant tunneling in double-barrier semiconductor structures
discovered by Chang, Esaki, Tsu in 1974discovered by Chang, Esaki, Tsu in 1974
(IBM - Watson Research Center)
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For tunnelling from a two-
dimensional emitter (quantum 
well or heterostructure) through a 
planar double-barrier structure, 
i l  t   

pp 22

in-plane momentum conserves 
throughout tunnelling process. 
Then the resonant condition, 
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is the same for all electrons in the 
2D emitter, and the current has a 

This plot has been taken from publications of   
L Eaves and Nottingham semiconductor group.

2D emitter, and the current has a 
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Resonance transmission through a quantum dot
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Resonant tunnelling through a quantum dot
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Groups of K. von Klitzing (MPI-Stuttgart) and R. Haug (Hannover)
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Buttiker-Landauer formula – generalisation to finite temperatures.
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Resonance tunnelling through a ‘multi-level’ quantum dot
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Conditions necessary for the observation of resonance tunnelling through 
a ‘multi-level’ quantum dot.
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The Coulomb blockadeThe Coulomb blockade

Dynamical screening and Coulomb blockade in 
quantum dots.

Counting electrons one by one.

Single-electron transistor (SET)

Coulomb blockade in a superconducting island: p g
‘parity effect’.



Charge quantization in isolated quantum dots
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First observations: T.Fulton, G.Dolan PRL 59, 109 (1987) – Bell Labs 

V (mV)G

0.14 0.220.18

M.Kastner - Rev. Mod Phys. 64, 849 (1992) – MIT
Active groups: 
Marcus (Harvard); Kouwenhoven TUDelft); Haug (Hannover); Enssling (ETH Zurich)



Charge quantization  
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Although electron carries electric charge e, its interaction 
with other electrons is screened by the other electrons from 

the Fermi sea, so that e-e interaction is reduced.  
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Decay rate of charge localised at the dot 
determines broadening of single-electron 
charged state of the dot due to dynamical 

screening
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Coulomb Blockade of electron tunneling
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Conditions for the observation/use of the 
Coulomb Blockade of electron tunneling:Coulomb Blockade of electron tunneling:
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Single electron transistor (SET)

source

drain
gate, Vg

D. Goldhaber-Gordon and M. Kastner (MIT) 

Current through a biased SET is very sensitive to the g y
electrostatic environment, so that it can be used to measure 

distribution of potential/charges on the surfaces.



Scanning SET

Scan of a density distribution in 
graphene deposited on SiO2. The 
observed inhomogeneous electron 
density (p- and n-type puddles) is 
due to deposits stuck between thedue to deposits stuck between the 
substrate and graphene sheet.  A.Yacobi (Harvard) 

Science, 2007



Graphene quantum dot circuits and graphene-
based single-electron transistor

Geim & Novoselov (Manchester)Geim & Novoselov (Manchester)  
Ensslin (ETH Zurich)



Coulomb blockade in a superconducting island:
condensate of Cooper pairs creates a gap in the single-condensate of Cooper pairs creates a gap     in the single-

particle spectrum




Parity effect 
in a superconducting island
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Lafarge, Joyez, Esteve, Urbina, 
Devoret, PRL 70, 994 (1993)


